

Plasma Ion-Channel Undulator (PICU)

CO₂ laser-driven plasma structures undulating an externally injected e⁻ beam

S. Rozario, A. Sahai, J. C. Wood, Z. Najmudin a.sahai@imperial.ac.uk

Outline

- Background & Motivation
- Description of Plasma Ion-Channel Undulator
- Laser-plasma interaction challenges
- PIC simulation laser-plasma expectations
- expt. setup / diagnostics & expected results
- Summary

Background

Radiation from insertion devices

Undulator

$$2R/\gamma >> \lambda_u/2$$

$$K = \gamma \lambda_u / R$$
, $K << 1$

degree of coherence

Wiggler

$$\Psi >> \Delta \theta$$

several harmonics

Motivation

Conventional
Undulators
(several meters long)

Plasma Ion-Channel Undulator

(centimeter scale)

a few centimeters long gas-cell

Description of the idea - I

Plasma frequency : $\omega_{pe} = \sqrt{4\pi e^2 n_0/m_e}$

Betatron frequency : $\omega_{eta}(t) \simeq \omega_{pe}/\sqrt{2\gamma(t)}$

Undulator wavelength : $\lambda_u(t) \equiv \lambda_{\beta}(t) = \sqrt{2\gamma(t)} \ \lambda_{pe}$

Strength parameter : $K(t) = r_{\beta}(t) k_{pe} \sqrt{2\gamma(t)}$

Description of the idea - II

Rad. Freq. (n_{th} harmonic) : $\omega_{rad}[n] = 2\gamma^2\omega_{\beta}/(1+K^2/2)$ [n]

Ave. Power per e-per λ_{β} : $\bar{P}_{\beta}=r_{e}m_{e}c^{3}\gamma^{2}K^{2}k_{\beta}^{2}/3$

Rad. Energy per e $^{\text{-}}$: $W_{\beta}=ar{P}_{\!\beta} imes N_{\!\beta} imes \lambda_{\!\beta}/c = 2\pi/3\;r_em_ec^2\gamma^2K^2k_{\!\beta}N_{\!\beta}$

Photons Rad. per e $\bar{N}_s=W_s/\hbar\omega_{rad}$ $=\pi/3~\alpha_{fine}~(1+K^2/2)K^2N_\beta/[n]$

Laser-Plasma challenges

- Laser self-guiding in plasma [P/P_c & Z_R]
- Ion-channel velocity $[\gamma_{\phi}]$ vs. beam velocity $[\gamma_{beam}]$
- Extent of cavitation [δn/n vs. a₀]
- Laser focal-spot matching in plasma [w₀ vs. c/ω_p a₀^{0.5}]
- Betatron wavelength vs. laser guiding distance $\left[\frac{\lambda_{B}}{Z_{R}}\right]$
- Beam radius vs. laser focal-spot [σ_r / w₀]

Laser-Plasma BNL-ATF parameters

Table 1: ATF (2017) e^- beam and CO_2 -laser properties

	2 1 1
e^{-} beam	
Input energy (E)	80 MeV
Emittance	1 mm-mrad
σ_r	$50~\mu\mathrm{m}$ r.m.s.
eta_{beam}	$2.5 \mathrm{\ mm}$
Charge	100 pC
Bunch length (σ_z/c)	1 psec
$\Delta E/E$	0.15 r.m.s.
CO_2 laser	
λ_0	$10.3~\mu\mathrm{m}$
$w_0 (1/e^2 \text{ radius})$	30 - $100~\mu\mathrm{m}$
Z_R	0.3 - 3 mm
Pulse energy	5 J
Pulse length	3.5 - 1.5 psec
Pulse power	1 - 3 TW
Polarization	Linear
	<u> </u>

Laser-Plasma BNL-ATF-II parameters

Table 2: ATF-2 e^- beam and CO_2 -laser properties

	2 1 1
e^{-} beam	
Input energy (E)	$500 \; \mathrm{MeV}$
Emittance	
σ_r	
eta_{beam}	
Charge	10-100 pC
Bunch length (σ_z/c)	> 100 fsec
$\Delta E/E$	
CO_2 laser	
$\overline{\lambda_0}$	$10.3~\mu\mathrm{m}$
$w_0 (1/e^2 \text{ radius})$	30 - $100~\mu\mathrm{m}$
Z_R	0.3 - $3 mm$
Pulse energy	$50~\mathrm{J}$
Pulse length	500 fsec
Pulse power	$100 \; \mathrm{TW}$
Polarization	Linear

PICU concept - PIC simulation

 $n_0 = 2 \times 10^{17} \text{ cm}^{-3} \rightarrow \text{artificial thin - wide beam}$

~ 40 GV / m – Transverse focusing fields [~100 $\sqrt{(n_0/10^{18} cm^{-3})}$ GV/m]

Effective Undulator Magnetic field \rightarrow B_U \sim E_{plasma} / c = 100 T

Undulator wavelength $\rightarrow \lambda_u \sim 1.5 \text{ mm}$

Laser self-guiding vs. a₀ parameters

Betatron wavelength vs laser-guiding length

e-beam size vs laser focal-spot size

Ion-channel trans. size – laser guiding / cavitation

Tuning K_{ICU} in PICU

2×10^{17} cm⁻³ - PIC simulations

Proposed Expt. Setup

2 × 10¹⁷ cm⁻³ – expected results

Table 3: Ion-Channel Undulator / Plasma Undulator properties at $2\times10^{17}~\rm{cm^{-3}}$

Plasma parameters	1TW	2TW
Density	$2 \times 10^{17} \text{ cm}^{-3}$	
Critical Power (P _c)	$1.1~\mathrm{TW}$	1.1 TW
$\mathrm{P/P_c}$	0.88	1.87
$\operatorname{matched}$ - w_0	$32~\mu\mathrm{m}$	$36~\mu\mathrm{m}$
a_0	1.52	1.95
λ_eta	1.45 mm	1.45 mm
Z_{R} (matched- w_{0})	0.32 mm	$0.4 \mathrm{\ mm}$
σ_r/w_0	0.9	0.8
$\gamma_{\phi}/\gamma_{beam}$	0.05	0.05
K _{ICU} (undulator strength)	20.8	20.8
$\lambda_{ m ICU} \; (\lambda_{eta}/2\gamma_{beam}^2)$	26 nm	26 nm
P _{ICU} (rad. power)	$0.045 \; \mathrm{W}$	$0.045~\mathrm{W}$
$\mathrm{E_{ICU}} \; (\mathrm{energy} \; @ \; 1 \; \lambda_{\beta})$	$200 \times 10^{-12} \text{ J}$	$200 \times 10^{-12} \text{ J}$
$N_{\mathrm{ph}}~(@~1~\lambda_{eta})$	2.7×10^{10}	2.7×10^{10}

5×10^{16} cm⁻³ – expected results

Table 4: Ion-Channel Undulator / Plasma Undulator properties at $5\times10^{16}~\rm{cm^{-3}}$

Plasma parameters	$1 \mathrm{TW}$	$2\mathrm{TW}$
Density	$\frac{5 \times 10^{16} \text{ cm}^{-3}}{5 \times 10^{16} \text{ cm}^{-3}}$	21 11
Critical Power (P _c)	$3.9~\mathrm{TW}$	$3.9~\mathrm{TW}$
P/P_c	0.26	0.5
$\operatorname{matched}$ - w_0	$48~\mu\mathrm{m}$	$54~\mu\mathrm{m}$
a_0	0.1	1.3
λ_{eta}	$2.7 \mathrm{\ mm}$	$2.7 \mathrm{mm}$
\mathbf{Z}_{R} (matched- w_0)	$0.72 \mathrm{\ mm}$	$0.9 \mathrm{\ mm}$
σ_r/w_0	0.6	0.6
$\gamma_{\phi}/\gamma_{beam}$	0.1	0.1
K _{ICU} (undulator strength)	11	11
$\lambda_{\rm ICU} \ (\lambda_{\beta}/2\gamma_{beam}^2)$	52 nm	52 nm
P _{ICU} (power)	$5 \times 10^{-3} \text{ W}$	$5 \times 10^{-3} \text{ W}$
$\mathrm{E}_{\mathrm{ICU}} \; (\mathrm{energy} \; @ \; 1 \; \lambda_{\beta})$	$50 \times 10^{-12} \text{ J}$	$50 \times 10^{-12} \text{ J}$
$N_{\rm ph}~(@~1~\lambda_{\beta})$	1×10^{10}	1×10^{10}

5 × 10¹⁵ cm⁻³ – expected results

Table 5: Ion-Channel Undulator / Plasma Undulator properties at $5 \times 10^{15}~\mathrm{cm}^{-3}$

Plasma parameters	$1\mathrm{TW}$	$2\mathrm{TW}$
Density	$5 \times 10^{15} \text{ cm}^{-3}$	
Critical Power (P _c)	$38.7~\mathrm{TW}$	$38.7~\mathrm{TW}$
P/P_c	0.03	0.05
$\operatorname{matched}$ - w_0	$103~\mu\mathrm{m}$	$117~\mu\mathrm{m}$
a_0	0.5	$8.5 \mathrm{\ mm}$
λ_eta	$8.46~\mathrm{mm}$	13.4 mm
$\mathbf{Z}_{\mathrm{R}} \; (\mathrm{matched}\text{-}w_0)$	3.34 mm	$4.3 \mathrm{\ mm}$
σ_r/w_0	0.29	0.26
$\gamma_\phi/\gamma_{beam}$	0.3	0.3
K_{ICU} (undulator strength)	3.6	3.6
$\lambda_{ m ICU} \; (\lambda_{eta}/2\gamma_{beam}^2)$	170 nm	170 nm
P _{ICU} (rad. power)	$0.0002 \ \mathrm{W}$	$0.0002 \; \mathrm{W}$
$\mathrm{E_{ICU}} \; (\mathrm{energy} \; @ \; 1 \; \lambda_{\beta})$	$5 \times 10^{-12} \text{ J}$	$5 \times 10^{-12} \text{ J}$
$N_{\mathrm{ph}}~(@~1~\lambda_{eta})$	4×10^{9}	4×10^{9}

Summary and Key-points

- $au_{laser} \gg \lambda_{pe}$ GOOD for LONG & UNIFORM Ion-Channel
- Trans. & Long. size of the Ion-Channel GOOD for e-beam overlap
 10μm laser excites plasma structures ~ much larger than 1μm laser
- PIC simulations significant undulation of beam e⁻ trajectories in the channel
- X-ray pulses tunable wavelength from 10nm to 200nm via plasma-density
- X-ray pulses 10⁸ to 10¹⁰ photons
- Tuning **K**_{ICU} from **5** to **100**
- Planned applications medical imaging with advanced imaging techniques

Imperial-Gemini 1um laser - Medical Imaging results

courtesy: Dr. Jason Cole, Imperial College

Time Request

2 slots of 3 weeks in 2017

1TW (@3.5ps) [Early '17] & 2TW (@1.7ps) [Late '17]

1 week setup time2 week runs

Thank You!

Backup slides

UV spectrometer

1m f.l. Soft X-ray and Extreme UV Monochromator

The 248/310 is a 1000 mm focal length Rowland circle grazing incidence vacuum monochromator. It has 0.02 nm fwhm spectral resolution with 1200 g/mm grating. Its precision slits are micrometer adjustable from 0.005 to 0.5 mm. The 248/310 features a chord-length meter and manually operable wavelength drive for years of accurate and reproducible wavelength positioning. The scan controller provides computer/software control. The high performance instrument provides excellent performance from 1 nanometer up to 300 nm in the UV.

Use the 248/310 for XUV, SXR or extreme UV applications. The compact housing is easily adapted to most experiments. We can provide it complete with vacuum pumps, microchannel plates and CCD detectors.

1 to 310nm range | Direct-CCD, scanning slit, MCP configurations | Large assortment of gratings